久久国产加勒比精品无码,男女高潮又爽又黄又无遮挡,国产精品揄拍100视频,亚洲18色成人网站WWW

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調節ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產品(AEC-Q100/Q101)

Energy harvesting smart building sensors

To monitor and control smart buildings and enable the optimal use of resources, designers are incorporating an increasing number of remote wireless environmental sensors in both residential and non-residential buildings. For retrofitted buildings, it is easier to do this using plug and forget IoT sensors, where harvested energy is used to recharge embedded battery cells. These sensors can cover everything from temperature, air quality and humidity to light and motion.

Block diagram

Design considerations

  • Optimize power consumption to increase the effectiveness of energy harvesting. This can be done by carefully selecting components with low standby current, optimizing transmission intervals, and implementing sleep modes - Nexperia can help customers make the right calculation
  • Cost is a key concern, so standard SOT23 / SOT323 package options can be preferred to smaller, more efficient SMD package

Adaptive energy harvesting PMIC enables environmentally friendly autonomous, connected devices

Ambient energy harvesting has often been proposed for recharging batteries in remote internet-of-things devices but hasn’t yet taken off. Nexperia's new dedicated PMIC is set to radically improve the viability of energy harvesting with significant benefits for the environment.ve energy harvesting PMIC enables environmentally friendly autonomous, connected devices